
Copyright © Politehnica Bucharest 2025, licensed under CC BY-SA 4.0.

Processes
Lecture 3

https://pmrust.pages.upb.ro/

Processes
Process and threads

Context switching

Blocking and waking up

Process context

Process

An address space

One or more threads

Opened files

Sockets

Semaphores

Shared memory regions

Timers

Signal handlers

Many other resources and status information, all stored in the Process Control Block (PCB)

groups together resources

Threads

Each thread has its own stack and together with the register values it determines the thread execution

state

A thread runs in the context of a process and all threads in the same process share the resources

The kernel schedules threads not processes and user-level threads (e.g. fibers, coroutines, etc.) are not

visible at the kernel level

A thread is the basic unit that the kernel process scheduler uses to allow applications to run the CPU. A
thread has the following characteristics:

Processes in Tock

Bibliography

Alexandru Radovici, Ioana Culic, Getting Started with Secure Embedded Systems

Chapter 3 - The Tock system architecture

for this section

Process Control Block

the actual Process Control Block

the Task Queue

Grants pointers

Grants Data

The PCB is represented by the Process trait.

Process Control Block

Grant 2

Grant 1

0x0040000

0x003FFC8

0x003FFC0

Task Queue

Kernel Memory Break

Allocated Grant Pointer

Allocated Grant

Unallocated Grant Pointer

Scheduled Task

Process Memory Space

Driver Number 0x... Grant Pointer 1 (0x003FFC0)

Driver Number 0x... Grant Pointer 2 (0x003FFC8)

Driver Number 0x... Grant Pointer 3 (0x00000000)

Driver Number 0x... Grant Pointer n (0x00000000)

information that the kernel keeps about the processes

Process trait
identification

1 pub trait Process {

2 fn processid(&self) -> ProcessId;

3

4 /// Returns the [`ShortId`] generated by the application binary checker at loading.

5 fn short_app_id(&self) -> ShortId;

6

7 /// Returns the version number of the binary in this process, as specified

8 /// in a TBF Program Header. If the binary has no version assigned this

9 /// returns [`None`].

10 fn binary_version(&self) -> Option<BinaryVersion>;

11

12 /// Return the credential which the credential checker approved if the

13 /// credential checker approved a credential. If the process was allowed to

14 /// run without credentials, return `None`.

15 fn get_credential(&self) -> Option<AcceptedCredential>;

16

17 /// Returns how many times this process has been restarted.

18 fn get_restart_count(&self) -> usize;

19

20 /// Get the name of the process. Used for IPC.

21 fn get_process_name(&self) -> &'static str;

22 }

Process trait
tasks

1 pub trait Process {

2 /// Return if there are any Tasks (upcalls/IPC requests) enqueued for the process.

3 fn has_tasks(&self) -> bool;

4

5 /// Returns the number of pending tasks.

6 fn pending_tasks(&self) -> usize;

7

8 /// Queue a [`Task`] for the process. This will be added to a per-process buffer and executed by the

9 // scheduler. [`Task`]s are some function the process should run, for example a upcall or an IPC call.

10 fn enqueue_task(&self, task: Task) -> Result<(), ErrorCode>;

11

12 /// Remove the scheduled operation from the front of the queue and return it

13 /// to be handled by the scheduler.

14 fn dequeue_task(&self) -> Option<Task>;

15

16 /// Search the work queue for the first pending operation with the given

17 /// `upcall_id` and if one exists remove it from the queue.process

18 fn remove_upcall(&self, upcall_id: UpcallId) -> Option<Task>;

19

20 /// Remove all scheduled upcalls with the given `upcall_id` from the task queue.

21 /// Returns the number of removed upcalls.

Process trait
state

1 pub trait Process {

2 /// Returns the current state the process is in.

3 fn get_state(&self) -> State;

4

5 fn ready(&self) -> bool;

6 fn is_running(&self) -> bool;

7

8 fn set_yielded_state(&self);

9 fn set_yielded_for_state(&self, upcall_id: UpcallId);

10

11 fn stop(&self);

12 fn resume(&self);

13

14 fn set_fault_state(&self);

15

16 fn start(&self, cap: &dyn crate::capabilities::ProcessStartCapability);

17 fn try_restart(&self, completion_code: Option<u32>);

18

19 fn terminate(&self, completion_code: Option<u32>);

20

21 fn get_completion_code(&self) -> Option<Option<u32>>;

22 }

Process trait
memop

1 pub trait Process {

2 fn brk(&self, new_break: *const u8) -> Result<CapabilityPtr, Error>;

3 fn sbrk(&self, increment: isize) -> Result<CapabilityPtr, Error>;

4

5 fn number_writeable_flash_regions(&self) -> usize;

6

7 fn get_writeable_flash_region(&self, region_index: usize) -> (usize, usize);

8

9 fn update_stack_start_pointer(&self, stack_pointer: *const u8);

10 fn update_heap_start_pointer(&self, heap_pointer: *const u8);

11

12 fn build_readwrite_process_buffer(&self,

13 buf_start_addr: *mut u8, size: usize,

14) -> Result<ReadWriteProcessBuffer, ErrorCode>;

15 fn build_readonly_process_buffer(&self,

16 buf_start_addr: *const u8, size: usize,

17) -> Result<ReadOnlyProcessBuffer, ErrorCode>;

18

19 unsafe fn set_byte(&self, addr: *mut u8, value: u8) -> bool;

20

21 fn get_command_permissions(&self, driver_num: usize, offset: usize) -> CommandPermissions;

Process trait
memory protection unit

1 pub trait Process {

2 /// Configure the MPU to use the process's allocated regions.

3 fn setup_mpu(&self);

4

5 /// Allocate a new MPU region for the process that is at least

6 /// `min_region_size` bytes and lies within the specified stretch of

7 /// unallocated memory.

8 fn add_mpu_region(

9 &self,

10 unallocated_memory_start: *const u8,

11 unallocated_memory_size: usize,

12 min_region_size: usize,

13) -> Option<mpu::Region>;

14

15 /// Removes an MPU region from the process that has been previously added

16 /// with `add_mpu_region`.

17 fn remove_mpu_region(&self, region: mpu::Region) -> Result<(), ErrorCode>;

18 }

Process trait
grant

1 pub trait Process {

2 fn allocate_grant(&self, grant_num: usize, driver_num: usize, size: usize, align: usize) -> Result<(), ()>;

3 fn grant_is_allocated(&self, grant_num: usize) -> Option<bool>;

4

5 fn allocate_custom_grant(&self,

6 size: usize, align: usize

7) -> Result<(ProcessCustomGrantIdentifier, NonNull<u8>), ()>;

8

9 fn enter_grant(&self, grant_num: usize) -> Result<NonNull<u8>, Error>;

10 fn enter_custom_grant(&self, identifier: ProcessCustomGrantIdentifier) -> Result<*mut u8, Error>;

11

12 unsafe fn leave_grant(&self, grant_num: usize);

13

14 fn grant_allocated_count(&self) -> Option<usize>;

15

16 fn lookup_grant_from_driver_num(&self, driver_num: usize) -> Result<usize, Error>;

17 }

Process trait
subscribe

1 pub trait Process {

2 /// Verify that an upcall function pointer is within process-accessible

3 /// memory.

4 fn is_valid_upcall_function_pointer(&self, upcall_fn: *const ()) -> bool;

5

6 /// Set the return value the process should see when it begins executing

7 /// again after the syscall.

8 fn set_syscall_return_value(&self, return_value: SyscallReturn);

9 }

Process trait
context switch

1 pub trait Process {

2 fn set_process_function(&self, callback: FunctionCall);

3

4 /// Set the function that is to be executed when the process is resumed.

5 fn switch_to(&self) -> Option<syscall::ContextSwitchReason>;

6

7 fn get_addresses(&self) -> ProcessAddresses;

8 fn get_sizes(&self) -> ProcessSizes;

9

10 fn get_stored_state(&self, out: &mut [u8]) -> Result<usize, ErrorCode>;

11 }

Process trait
debug

1 pub trait Process {

2 fn print_full_process(&self, writer: &mut dyn Write);

3

4 fn debug_syscall_count(&self) -> usize;

5 fn debug_dropped_upcall_count(&self) -> usize;

6 fn debug_timeslice_expiration_count(&self) -> usize;

7

8 /// Increment the number of times the process has exceeded its timeslice.

9 fn debug_timeslice_expired(&self);

10

11 /// Increment the number of times the process called a syscall and record

12 /// the last syscall that was called.

13 fn debug_syscall_called(&self, last_syscall: Syscall);

14

15 /// Return the last syscall the process called. Returns `None` if the

16 /// process has not called any syscalls or the information is unknown.

17 fn debug_syscall_last(&self) -> Option<Syscall>;

18 }

ProcessStandard
the reference implementation of the Process trait

1 pub struct ProcessStandard<'a, C: 'static + Chip, D: 'static + ProcessStandardDebug + Default> {

2 process_id: Cell<ProcessId>,

3 app_id: ShortId,

4

5 memory_start: *const u8,

6 memory_len: usize,

7 grant_pointers: MapCell<&'static mut [GrantPointerEntry]>,

8 kernel_memory_break: Cell<*const u8>,

9 app_break: Cell<*const u8>,

10 allow_high_water_mark: Cell<*const u8>,

11

12 flash: &'static [u8],

13

14 stored_state:

15 MapCell<<<C as Chip>::UserspaceKernelBoundary as UserspaceKernelBoundary>::StoredState>,

16

17 state: Cell<State>,

18

19 tasks: MapCell<RingBuffer<'a, Task>>,

20

21 /* ... */

22 }

ProcessStandard
the reference implementation of the Process trait

1 pub struct ProcessStandard<'a, C: 'static + Chip, D: 'static + ProcessStandardDebug + Default> {

2 /* ... */

3 footers: &'static [u8],

4 header: tock_tbf::types::TbfHeader,

5 credential: Option<AcceptedCredential>,

6

7 kernel: &'static Kernel,

8 chip: &'static C,

9

10 fault_policy: &'a dyn ProcessFaultPolicy,

11 storage_permissions: StoragePermissions,

12 mpu_config: MapCell<<<C as Chip>::MPU as MPU>::MpuConfig>,

13 mpu_regions: [Cell<Option<mpu::Region>>; 6],

14

15

16

17 restart_count: Cell<usize>,

18 completion_code: OptionalCell<Option<u32>>,

19

20 debug: D,

21 }

Scheduler trait
1 pub trait Scheduler<C: Chip> {

2 fn next(&self) -> SchedulingDecision;

3 fn result(&self, result: StoppedExecutingReason, execution_time_us: Option<u32>);

4

5 /// Tell the scheduler to execute kernel work such as interrupt bottom

6 /// halves and dynamic deferred calls.

7 unsafe fn execute_kernel_work(&self, chip: &C) {

8 chip.service_pending_interrupts();

9 while DeferredCall::has_tasks() && !chip.has_pending_interrupts() {

10 DeferredCall::service_next_pending();

11 }

12 }

13

14 /// Ask the scheduler whether to take a break from executing userspace

15 /// processes to handle kernel tasks.

16 unsafe fn do_kernel_work_now(&self, chip: &C) -> bool {

17 chip.has_pending_interrupts() || DeferredCall::has_tasks()

18 }

19

20 /// Once a process is scheduled the kernel will try to execute it until it

21 /// has no more work to do or exhausts its timeslice.

22 unsafe fn continue_process(&self, _id: ProcessId, chip: &C) -> bool {

23 !(chip.has_pending_interrupts() || DeferredCall::has_tasks())

Default Scheduling

Get Next Process

Yes

Is Running? Is Yielded? Has Scheduled
Upcalls?

Schedule

Is Faulted?

Restart Process Fault!

Systick
or

Kernel Task Done

No

No

Yes

Yes

No

Application

Kernel

Run Upcall

Set Running

Deferred Call
Executed

Hardware Interrupt

Execute generic_isr

Return to Kernel

System Call
or

Fault

Deferred Calls Array

Deferred Caller

yes

no

Has Scheduled
Calls?

no

Is Syscall or Fault? Execute Syscall or
Fault Handler

yes

yes

no

Has Pending
Interrupts?

Execute Interrupt
Handler

Schedule Process

Process

Kernel

Interrupt Handler

Empty Deferred Call Handler

Deferred Call Handler

Processes in Linux

Bibliography

Daniel P. BOVET & Marco CESATI, Understanding the LINUX KERNEL, 3rd Edition, O’Reilly

Chapter 3, Processes

for this section

procfs
 +---+

 | dr-x------ 2 tavi tavi 0 2021 03 14 12:34 . |

 | dr-xr-xr-x 6 tavi tavi 0 2021 03 14 12:34 .. |

 | lrwx------ 1 tavi tavi 64 2021 03 14 12:34 0 -> /dev/pts/4 |

 +--->| lrwx------ 1 tavi tavi 64 2021 03 14 12:34 1 -> /dev/pts/4 |

 | | lrwx------ 1 tavi tavi 64 2021 03 14 12:34 2 -> /dev/pts/4 |

 | | lr-x------ 1 tavi tavi 64 2021 03 14 12:34 3 -> /proc/18312/fd |

 | +---+

 | +--+ +----------------------------+

 | | 08048000-0804c000 r-xp 00000000 08:02 16875609 /bin/cat | | Name: cat |

$ ls -1 /proc/self/ | 0804c000-0804d000 rw-p 00003000 08:02 16875609 /bin/cat | | State: R (running) |

cmdline | | 0804d000-0806e000 rw-p 0804d000 00:00 0 [heap] | | Tgid: 18205 |

cwd | | ... | | Pid: 18205 |

environ | +----------->| b7f46000-b7f49000 rw-p b7f46000 00:00 0 | +------->| PPid: 18133 |

exe | | | b7f59000-b7f5b000 rw-p b7f59000 00:00 0 | | | Uid: 1000 1000 1000 1000 |

fd --------+ | | b7f5b000-b7f77000 r-xp 00000000 08:02 11601524 /lib/ld-2.7.so | | | Gid: 1000 1000 1000 1000 |

fdinfo | | b7f77000-b7f79000 rw-p 0001b000 08:02 11601524 /lib/ld-2.7.so | | +----------------------------+

maps -----------+ | bfa05000-bfa1a000 rw-p bffeb000 00:00 0 [stack] | |

mem | ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] | |

root +--+ |

stat |

statm |

status --+

struct task_struct

1 struct task_struct {

2 struct thread_info thread_info; /* 0 8 */

3 volatile long int state; /* 8 4 */

4 void * stack; /* 12 4 */

5

6 ...

7

8 /* --- cacheline 45 boundary (2880 bytes) --- */

9 struct thread_struct thread __attribute__((__aligned__(64))); /* 2880 4288 */

10

11 /* size: 7168, cachelines: 112, members: 155 */

12 /* sum members: 7148, holes: 2, sum holes: 12 */

13 /* sum bitfield members: 7 bits, bit holes: 2, sum bit holes: 57 bits */

14 /* paddings: 1, sum paddings: 2 */

15 /* forced alignments: 6, forced holes: 2, sum forced holes: 12 */

16 } __attribute__((__aligned__(64)));

Threads (Windows)

The typical thread implementation is one where the threads are implemented as a separate data structure
which is then linked to the process data structure. For example, the Windows kernel uses such an
implementation:

how threads should look like

Threads

Linux uses a different implementation for threads. The basic unit is called a task (hence the struct
task_struct) and it is used for both threads and processes.

Thus, if two threads are in the same process will point to the same resource structure instance.

If two threads are in different processes they will point to different resource structure instances.

the Linux way

The clone system call

In Linux a new thread or process is created with the clone() system call. Both the fork() system call and
the pthread_create() function use the clone() implementation.

It allows the caller to decide what resources should be shared with the parent and which should be copied or
isolated:

CLONE_FILES - shares the file descriptor table with the parent

CLONE_VM - shares the address space with the parent

CLONE_FS - shares the filesystem information (root directory, current directory) with the parent

CLONE_NEWNS - does not share the mount namespace with the parent

CLONE_NEWIPC - does not share the IPC namespace (System V IPC objects, POSIX message queues) with

the parent

CLONE_NEWNET - does not share the networking namespaces (network interfaces, routing table) with the

parent

create a process or a thread

Access the current struct task_struct

opening a file needs access to struct task_struct ’s file field

mapping a new file needs access to struct task_struct ’s mm field

The current macro is available to access the current process’s struct task_struct

Over 90% of the system calls need to access the current process structure so it needs to be fast

Useful process macro’s
1 /* how to get the current stack pointer from C */

2 register unsigned long current_stack_pointer asm("esp") __attribute_used__;

3

4 /* how to get the thread information struct from C */

5 static inline struct thread_info *current_thread_info(void)

6 {

7 return (struct thread_info *)(current_stack_pointer & ~(THREAD_SIZE – 1));

8 }

9

10 #define current current_thread_info()->task

Context Switch

Task States

Conclusion

Process and threads

Context switching

Blocking and waking up

Process context

we talked about

