System Calls

Lecture 2

Copyright © Politehnica Bucharest 2025, licensed under CC BY-SA 4.0.

Qy

https://pmrust.pages.upb.ro/

Bibliography

for this section
1. Alexandru Radovici, Ioana Culic, Getting Started with Secure Embedded Systems

= Chapter 3 - The Tock system architecture

2. Daniel P. Bovet, Marco Cesati, Understanding the LINUX KERNEL

= Chapter 10 - System Calls

Qy

System Calls

= What is a system call?

= What is vDSO?

= How a system call is performed?
= Tock system calls

= Linux system calls

Qy

Application Application

Operating System

the main role * %} *[% *}L%}

Allow Portability

= provides a hardware independent API [ENE }"""""S-u-p-e-r-v-i;(;r-;\/I-t;t-i:a"
4 N

Kernel

= applications should run on any hardware

o 5 -
R M d Isolati ==
esources anagement an solation
Actions :

Storage

= allow applications to access resources

= prevent applications from accessing

Processor

hardware directly

Accelerator Disk Drive Peripherals

= isolate applications NS @ . ‘ . ‘

System Call

the OS API

accessing hardware can be performed
only by the kernel

The application:

1. puts values in the registers / stack
2. triggers an exception

» syc instruction for ARM

= sysenter instruction for x86
The kernel:

1. looks at the registers and determines
what the required action is
2. performs the action

3. puts the return values in registers / stack

Application

nnnnnnnnn

Exception Handler
STOP

ARRET

\ 4
Processor))
Disk Drive

Registers
0 1 2 3

rl

r2 @ o

MMMMMM

Nmmmmmmmmm e m e — i —

vDSO

Virtual Dynamic Shared Object

Qy

Address Space (e) |,
p s ~\ | Ox_FFFF_FFFF
Kernel Space
with vDSO
[RAM Mapping (up to 800 MB)]
= kernel memory that can be read from userspace
& Virtual Dynamic Shared Object)
= system calls that can run in userspace (examples) =~ fiorssssmsmsmemmeme oo -| 0x_C000_0000
User Space
" getpid] Kemel Stack ;
m gettimeofday Stack
= gettime Libraries
. Code Data Code Data
= Linux implements it as an ELF object libvdso.so . .
=]Jookable by process loaders
Heap
Symbol table '.dynsym' contains 11 entries:
Num: Value Size Type Bind Name
2: ff700600 727 FUNC WEAK clock_gettime@aLINUX_2.6
4: ££7008e@ 365 FUNC GLOBAL __vdso_gettimeofday@aLINUX_2.6 Data
5: ££700a70 61 FUNC GLOBAL __vdso_getcpugaLINUX_2.6
6: ££7008e0 365 FUNC WEAK gettimeofday@aLINUX_2.6
7. ££700a50 22 FUNC WEAK time@gLINUX_ 2.6
[Null Protection

A\ ~/ 0x000_0000

System Call for Tock OS

e system calls

Qy

Flash Storage \ 0x0000_0000 O
RP2040 Boot Loader

p
Memory Layout
.boot_loader
for the RP2040 o
Kernel
[App TBF]
= is written in flash separated from the apps [App TBF)
App TBF
= Joads each app at boot [o |
RAM
Applications s
App Stack
= each application TBF is written to the flash separately | =
App Data
= each application has a separate [—]
u StaCk in RAM App Stack
= grant section where the kernel stores data about the app AF:D:
= data section in RAM App Stack
App Data
[Grant]

__/ OXFFFF_FFFF
* drawing is not at scale, TBF sections are at least as large as the App Data sections

Memory Layout

for the RP2040 at runtime

Kernel
= sets up the MPU every time it switches to a process
Applications

= can read and execute its code
®» can read and write its stack and data

= canread and write the allocated heap

Applications are not allowed to access the kernel’s memory or

the peripherals.

Flash Storage 0x0000_0000 O
RP2040 Boot Loader

.boot_loader
Interrupt Vector

Kernel Code
.text

Kernel Read Only Data
.rodata

Kernel Data
.data

TBF Header]

App .text MPU Region(s)
App .rodata R

[App .data]»--- -
Padding

App TBF

Copied at startup
)
>
°
©
el
w
m
~—

[Kernel Stack J

Kernel .bss

Kernel Data
.data

Copied when process is initialised

App Stack
App .bss

MPU Region(s)

RW XN App .data

App Memory

Heap

—

Grant J

------- OXFFFF_FFFF

*drawing is not at scale, TBF sections are at least as large as the App Data sections

System Calls

0. Yield

1. Subscribe

2. Command

3. ReadWriteAllow
4. ReadOnlyAllow
5. Memop
6. Exit
7

. UserspaceReadableAllow

Allow RW or RO
(optional)

Buffer

i

Subscribe

A

Command

not ushble by
the application

L

v
=
o
o

Is Yielded?

Callback Ran?

yes

UnAllow RW or RO
(optional)

i

Buffer

Run Upcall

Qy

5: Memop O

Memop expands the memory segment available to the process, allows the process to retrieve pointers to its
allocated memory space, provides a mechanism for the process to tell the kernel where its stack and heap
start, and other operations involving process memory.

memop(op_type: u32, argument: u32) -> [[VARIES]] as u32

Arguments Return

= op_type : Aninteger indicating whether thisisa = Dependent on the particular memop call.
brk (0),a sbrk (1),or another memop call.

= argument : The argument to brk , sbrk ,or
other call.

Each memop operation is specific and details of each

call can be found in the memop _s_yg_c_g_l_l_
documentation.

https://github.com./tock/blob/master/doc/syscalls/memop.md
https://github.com./tock/blob/master/doc/syscalls/memop.md

o,
6: Exit O

The process signals the kernel that it has no more work to do and can be stopped or that it asks the kernel to
restart it.

tock_exit(completion_code: u32)
tock_restart(completion_code: u32)

Return

None

2: Command

Command instructs the driver to perform a specific action.

command(driver: u32, command_number: u32, argumentl: u32, argument2: u32) -> CommandReturn

Arguments

= driver :integer specifying which driver to use

= command_number :the requested command.

= argumentl :acommand-specific argument

= argument2 :acommand-specific argument

One Tock convention with the Command system call

is that command number 0 will always return a value
of 0 or greater if the driver is present.

Return

» three u32 numbers

= Errors

= NODEVICE if driver doesnot referto a valid
kernel driver.

= NOSUPPORT if the driver exists but doesn’t
support the command_number .

= Other return codes based on the specific driver.

Qy

1: Subscribe

Subscribe assigns upcall functions to be executed in response to various events.

subscribe(driver: u32, subscribe number: u32, upcall: u32, userdata: u32) -> Result<Upcall Upcall, ErrorCode

Arguments Return

= driver :integer specifying which driver to use = The previously registered upcall or
" subscribe number :event number TOCK_NULL_UPCALL

= upcall :function’s pointer to call upon event = Errors

» NODEVICE if driver does not refer to a valid

void upcall(int argl, int arg2, int arg3, void* userdata

= userdata :value that will be passed back, usually kernel driver.

a pointer ® NOSUPPORT if the driver exists but doesn’t

support the subscribe number .

Qy

0: Yield

Yield transitions the current process from the Running to the Yielded state.

yield()
yield_no_wait()

yield_for(driver_number: u32, subscribe number: u32);

Return

yield: None

yield no wait: @ -there was no queued upcall function to execute/ 1 - upcall ran

yield for: None

Qy

e
3 and 4: AllowRead(Write/Only) O

Allow shares memory buffers between the kernel and application.

allow_readwrite(driver: u32, allow _number: u32, pointer: usize

allow_readonly(driver: u32, allow number: u32, pointer: usize

Arguments

= driver :integer specifying which driver to use =

= allow_number :driver-specific integer specifying ™
the purpose of this buffer

= pointer : pointer to the buffer in the process
memory space
= null pointer revokes a previously shared buffer

= size :thelength of the buffer

size:
size:

u32
u32

-> Result<ReadWriteAppSlice
-> Result<ReadWriteAppSlice

ReadWriteAppSlice
ReadWriteAppSlice

Return

The previous allowed buffer or NULL
Errors

NODEVICE if driver does not refer to a valid

kernel driver.

NOSUPPORT if the driver exists but doesn’t

support the allow_number .

INVAL the buffer referred to by pointer and
size lies completely or partially outside of the

processes addressable RAM.

System Call Pattern

1.

allow: if data exchange is required, share a buffer

with a driver

. subscribe to the action done event

. send a command to ask the driver to start

performing an action

. yield to wait for the action done event

m the kernel calls a callback
= verify if the expected event was triggered, if not

yield

. unallow: get the buffer back from the driver

Allow RW or RO
(optional)

Subscribe

Buffer

' cwwwe |

Command

not usiable by
the application

> Yield
no

Callback Ran?

L

yes

UnAllow RW or RO
(optional)

i

Buffer

Run Upcall

Qy

Making a system call

ARM Cortex-M

1 syscall_return_t command(uint32_t driver, uint32_t command,
2 int argl, int arg2) {

3 register uint32_t r@ __asm__ ("r@") = driver;

4 register uint32_t r1 __asm__ ("rl") = command;

5 register uint32_t r2 __asm__ ("r2") argl;
6
7
8
9

register uint32_t r3 __asm__ ("r3") arg2;
register uint32_t rtype __asm__ ("r0");
register uint32_t rvl __asm__ ('"rl");
register uint32_t rv2 __asm__ ("r2");

10 register uint32_t rv3 __asm__ ("r3");

11 __asm__ volatile (

12 svc 2

13 : "=r" (rtype), "=r" (xrvl), "=r" (zv2), "=r" (rv3)
14 :'r" (@), "r" (rl), "r" (x2), "r" (x3)

15 : "memory

16 Js

17 syscall_return_t rval = {rtype, {rvl, rv2, rv3}};

18 return rval;

Qy

Making a system call

x86

push (%]

push (%]

push 0

push 1

mov eax, ©
int 0x40
add esp, 16

performs atrap int 04h

parameters are sent on the stack

In contrast with other embedded architectures like ARM or RISC-V, x86 does not have very many general purpose registers to spare. The ABI

defined here draws heavily from the cdecl calling convention by using the stack instead of registers to pass data between user and kernel mode.

Qy

System call dispatcher

match syscall {

Qy

Syscall: :Memop { operand, argd } => { /* ... */ }

Syscall::Yield { which, param_a, param_b } => { /* ... */ }

Syscall: :Subscribe { driver_number, .. }

| Syscall::Command { driver_number, .. }

| Syscall::ReadWriteAllow { driver_ number, .. }

| Syscall::UserspaceReadableAllow { driver_number, .. }

| Syscall::ReadOnlyAllow { driver_number, .. } => {
resources

.syscall_driver_lookup()

.with_driver(driver_number, |driver| match syscall {

Syscall:
Syscall:
Syscall:
Syscall:
Syscall:
Syscall:

:Subscribe {driver_number, subdriver_number, upcall_ptr, appdata} => { /* d.subscribe (...) */ }
:Command {driver_ number, subdriver_number, argd, argl} => { /* d.command(...) */ }

:ReadWriteAllow {driver_number, subdriver_ number, allow_address allow_size} => { /* d.read write_allo
:UserspaceReadableAllow {driver_number, subdriver_number, allow_address, allow_size} => { /* d.usersp
:ReadOnlyAllow {driver_number, subdriver_number, allow_address, allow_size} => { /* d.read_only_allow
:Yield { .. }

| Syscall::Exit { .. }
| Syscall::Memop { .. } => { debug_assert!(false, "Kernel system call handling invariant violated!"); 7},

»
b

Syscall::Exit { which, completion_code } => { /* stop or restart process */ }

Address Verification

= memory is shared only through
= ReadOnlyAllow / ReadWriteAllow

= YieldNoWait - single point of use in kernel
Allow

= kernel verifies the buffer (address and length)
= build a safe ProcessBuffer that capsules use
= memop cannot reduce the process’s memory

= the drivers needs to check if the buffer exists
YieldNoWait

= kernel verifies the address every time
= costly

= works on non-MMU systems, not that slow

N Application

—

allow__... (capsule_number, allow_number, buffer_ptr, len)

User Space

[:] Kernel

"] syscall Capsule

Is the system call
allowed?
(SyscallFilter trait)

SyscallReturn::Allow...Failure
(errror, buffer_ptr)

Ok(0)

Get capsule with
id capsule_number
(SyscallDriverLookup trait)

SyscallReturn::Allow...Failure
(ErrorCode::NODEVICE, buffer_ptr)

found

Is the provided buffer in the

application's memory?

...Failure
(ErrorCode::INVAL, buffer_ptr)

yes

allow__... (process_id, allow_number, buffer)

|

..Failure
(buffer, ErrorCode::NOSUPPORT)

Is allow_number (
valid? e L
T
yes

|

Register buffer

—

Success? no ‘

yes

_ Ok (previous_buffer)

Qy

Allow System Calls (kernel)

match process.build_readwrite_process_buffer(allow_address, allow_size) {

Ok(rw_pbuf) => {

match crate::grant::allow_rw(process, driver_number, subdriver_number, rw_pbuf) {

Ok(rw_pbuf) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn: :AllowReadWriteSuccess(ptr, len)

3

Err((rw_pbuf, err @ ErrorCode: :NOMEM)) => {
// simplified version
let (ptr, len) = rw_pbuf.consume();
SyscallReturn: :AllowReadWriteFailure(err, ptr, len)

3

Err((rw_pbuf, err)) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn: :AllowReadWriteFailure(err, ptr, len)

3

Err(allow_error) => {

0x0040000

[Driver Number 0x... | [Grant Pointer 1 (0x003FFCO) |

-+- [Driver Number Ox... | [Grant Pointer 2 (0x003FFCB) |

[Driver Number OX... J [sramPoinlera(oxooouoooo)]

[Driver Number 0x...] [Grant Pointer n (0x00000000)]

] O] meskouee

Process Control Block

Grant 1

J
| |
.

I

DxOOSFFCO}

| Memory

Driver Data Structure (T)

(Padding

W1 [RwAllow (0x0000000) | Length (32bits) |

1051 | [RoAllow (0x0000000) | Length (32bits) |

)

}

:o [RwAIIow(OxUOSFUDO)I Length (32bits)]}
l

J

0 | Rollow (0x006F000) [Length (32bits) |

Una | [Upcall (0x00000000) | User Data (32bits)]J
1 [Upcall (0x003F200) [User Data (32bits)]‘
0 | | Upcall (0x003F000) [User Data (32bits)]‘

Allocated Grant Pointer [| Unallocated Grant Pointer

[] Alocated Grant [] scheduled Task
[] Process Memory Space

Allow System Call (driver)

1 struct App { /¥* per app stored driver data */ } i 7 \
2 i 0X0040000 Driver Data Structure (T)
1
Driver Number Ox... | [Grant Pointer 1 (0x003FFCO)
3 pub struct Console<'a> { E (J{
i --- (_river Number Ox... | [Grant Pointer 2 (0x003FFC8) |
o 1 addin
4 apps: Grant< g (" Driver Number 0x_.._] [Grant Pointer 3 (0x00000000) | (T)
f =
' : .| [RwAllow (0x0000000) Length (32bits)
5 App 2 i (" Driver Number 0x... | [Grant Pointer n (0x00000000) | il I 2 ”
6 UpcallCount<{ upcall::COUNT }>, | o || Rualow 0x005F000) [Lengh @b |
1 e Task Queue
7 ALLowRoCount<{ ro_aL low: : COUNT }> 5 0 [DDDD E] 1051 _RoAllow (0x0000000) | Length (32bits) |]
' \
8 ALLOWRWCOUnt<{ rw_al Low: : COUNT }> i [Process Control Block } 0 | RoAllow (0x006F000) [Length (32bits)]]
9 >, :
10 H Srant 2 CX0035ECE un | [Upcall (0x00000000) | User Data (32bits)]‘
[ran
/ / ce H 1 || Upcall (0x003F200) [User Data (32bits) | ‘
11 } i (St UXOQQFFC"} o [Upcall (0x003F000) [User Data (32bits)]]
! ran \
| N ,
12 0 Memory Break Allocated Grant Pointer [:]Unallcca(ed Grant Pointer
. . 1
13 impl SyscallDriver for Console<' > { ! [] Alocated Gram () scheduled Task
1
14 fn command(&self, cmd_num: usize, argl: usize, arg2: @ (] process wemory space

[InY
vl

self.apps.enter(processid, |app, kernmel _datal| { T I T I T ITIm I Tmm Ao

=
o

if let Some(buffer) = kernel_data.get_readwrite_processbuffer(@ /* buffer_number */) {

RN
~

// access the ‘buffer’

N N R R
P, ® O ®©
wJ
-
wJ
(S99]

YieldNoWait System Call

match which.try_into() {
Ok(YieldCall: :NoWait) => {
let has_tasks = process.has_tasks();

// Set the "did I trigger upcalls" flag.

// If address is invalid does nothing.

unsafe {
let address = param_a as *mut u8;
process.set_byte(address, has_tasks as u8);

if has_tasks {
process.set_yielded_state();

}
3
Ok(YieldCall::Wait) => { /* ... */ }
Ok(YieldCall::WaitFor) => { /* ... */ }

_ => { /* return to process */ }

Qy

System Call for Linux

CISC-like system calls

Qy

Linux’s System Call

for 32 bit x86 processors

Number

1

2

10

11

12

13

14

15

Syscall Name
sys_exit
sys_fork
sys_read
sys_write
sys_open
sys_close
sys_waitpid
sys_creat
sys_link
sys_unlink
sys_execve
sys_chdir
sys_time
sys_mknod

sys_chmod

Description

Exit a process

Create a child process
Read from file descriptor
Write to file descriptor
Opena file

Close a file descriptor
Wait for child process
Create a file

Create a hard link
Remove a file

Execute a program
Change working directory
Get system time

Create a special file

Change file permissions

Arguments (eax, ebx, ecx, edx, esi, edi)
(exit_code)

(none)

(fd, buf, count)

(fd, buf, count)
(filename, flags, mode)
(fd)

(pid, status, options)
(filename, mode)
(oldpath, newpath)
(filename)

(filename, argv, envp)
(path)

(tloc)

(filename, mode, dev)

(filename, mode)

Number Syscall Name

16 sys_lchown

19 sys_lseek

20 sys_getpid

29 sys_pause

37 sys_kill

45 sys_brk

54 sys_ioctl

78 sys_gettimeofday
90 sys_mmap

91 sys_munmap
102 sys_socketcall
120 sys_clone

122 sys_uname
140 sys_llseek

162 sys_nanosleep
168 sys_poll

183 sys_getcwd
252 sys_exit_group

Description

Change owner of a file
(symbolic)

Move file read/write pointer
Get process ID

Wait for signal

Send signal to a process
Change data segment size
Device-specific I/O operations
Get current time

Map memory

Unmap memory

Socket system calls wrapper
Create a new process (thread)

Get system information

Large file seek

Sleep fora given time
Wait for I/O events
Get current working directory

Exit all threads in process

Arguments (eax, ebx, ecx, edx, esi, edi

(filename, owner, group)

(fd, offset, whence)
(none)

(none)

(pid, signal)

(addr)

(fd, request, argp)

(tv, tz)

(addr, length, prot, flags, fd, offset)

(addr, length)

(call, args)

(flags, child_stack, ptid, tls, ctid)
(buf)

(fd, offset_high, offset_low, result,
whence)

(rqtp, rmtp)
(fds, nfds, timeout)
(buf, size)

(exit_code)

Linux’s System Calls

for 64 bit x86 processors

Syscall
Number

60

39

11
16
20
23
26
33

41

42

57

Syscall Name

sys_exit
sys_fork
sys_read
sys_write
sys_open
sys_close
sys_mmap
sys_execve
sys_lseek
sys_getpid
sys_getppid
sys_kill
sys_nanosleep

sys_socket

sys_connect

sys_clone

Description

Exita process

Create a child process
Read from file descriptor
Write to file descriptor
Opena file

Close a file descriptor
Memory mapping
Execute a program
Change file offset

Get process ID

Get parent process ID
Send a signal to a process
Sleep fora given time
Create a socket

Connect a socket to a remote
address

Create a new process (thread)

Arguments (rax, rdi, rsi, rdx, r10,
18, 1r9)

(exit_code)

(none)

(fd, buf, count)

(fd, buf, count)
(filename, flags, mode)
(fd)

(addr, length, prot, flags, fd, offset)
(filename, argv, envp)
(fd, offset, whence)
(none)

(none)

(pid, signal)

(rqtp, rmtp)

(domain, type, protocol)

(fd, addr, addrlen)

(flags, child_stack, ptid, tls, ctid)

Syscall
Number

59

72

87

93

104

115

156

231

263

Syscall Name

sys_wait4

sys_fstatat

sys_munmap

sys_ioctl

sys_set_tid_address

sys_fadvise64

sys_prlimit64

sys_getewd

sys_uname

sys_exit_group

Description

Wait for process to change
state

Get file status
Unmap memory

Device-specific /O
operations

Set thread ID address

Advise onfile I/0 operations

Get or set resource limits

Get current working directory
Get system information

Exitall threads in the process
group

Arguments (rax, rdi, rsi, rdx, r10,!
r8, 1r9)

(pid, status, options, rusage)

(dirfd, pathname, statbuf, flags)

(addr, length)

(fd, request, argp)

(tid)
(fd, offset, len, advice)

(pid, resource, new_limit,
old_limit)

(buf, size)

(buf)

(exit_code)

Making a system call

for 32 bit x86 processors

= put the arguments in registers
= switch to supervisor mode

= makeatrap- int 80h (Linux)/ int 20h (Windows)

= call a specific instruction like sysenter (Intel)or syscall (AMD)

mov eax, syscall_number
mov ebx, argl
mov ecx, arg2
mov edx, arg3
mov esi, arg4
mov edi, arg5

int 0x80

= the single return value is placed in eax

Qy

System Call Dispatcher

#define __SYSCALL_I386(nr, sym, qual) [nr] = sym,
const sys_call_ptr_t ia32_sys_call_table[] = {
[0 ... __NR_syscall_compat_max]| = &sys_ni_syscall,

#include <asm/syscalls_32.h

%5

__SYSCALL_T386(0, sys_restart_syscall)
__SYSCALL_TI386(1, sys_exit)
__SYSCALL_TI386(2, sys_fork)
__SYSCALL_T386(3, sys_read)
__SYSCALL_T386(4, sys_write)
#ifdef CONFIG_X86_32
__SYSCALL_TI386(5, sys_open)

#else

__SYSCALL_T386(5, compat_sys_open)
#endif

__SYSCALL_TI386(6, sys_close)

/¥ Handles int $0x80 */
void do_int860_syscall_32(struct pt_regs *regs)
{
enter_from_user_mode();
local_irqg_enable();
do_syscall_32 irgs_on(regs);

/* simplified version of the Linux x86 32bit System Call
Dispatcher */

static void do_syscall_32_irqgs_on(struct pt_regs *regs)

{

unsigned int nr = regs->orig_ax;

if (nr < TIA32_NR_syscalls)
regs->ax = ia32_sys_call_table[nr]
(regs->bx, regs->cx,
regs->dx, regs->si,
regs->di, regs->bp);
syscall_return_slowpath(regs);

Qy

Accessing memory from userspace

pointers from userspace have to be validated

1. Is the address in the kernel’s memory? - if
2. Is the address in the process’ address space?
» difficult with if - takes time
= use MMU faults
3. Access the memory
= works -> return the value

= faults ->figure out why?

Possible Faults

1. copy-on-write,demand paging or reserved but not committed page

2. faulty address
3. kernel bug

access (ptr, size)

In kernel
memory?

no
Perform Access

Page Fault Success

Kernel
bug?

N\

yes

return value

Print OOPS

i

-EFAULT

yes

Qy

Memory ACCQS S API Function / Macro

= The kernel API provides special userspace memory get_user()
access functions / macros
= Drivers and kernel code have to access userspace

memory only through these put_user()

if (copy_from_user(&kernel_buffer, user_ptr, size
return -EFAULT
copy_from _user()

memcpy(&kernel _buffer, user_ptr, size

copy_to_user()

int access_ok(const void * addr, unsigned long size

unsigned long a unsigned long) addr

if (a + size < a ||
a + size > current_thread_info addr_limit.seg access_ok()
return 9

return 1

clear_user()

Description O

Safely retrieves a single value
from user-space memory and
copies it into kernel-space.

Safely stores a single value
from kernel-space into user-
space memory.

Copies a block of memory
from user-space to kernel-
space.

Copies a block of memory
from kernel-space to user-
space.

Checks if the user-space
address is valid and accessible.

Clears a region of memory in
user-space (sets bytes to zero).

F aUIt cause ? Simulates a the behaviour of the cmp instruction o

[s it a wrong address or a kernel bug?
// Called by the page fault handler

. int fixup_ exception(struct pt_regs *regs, int trapnr
The get user functions pE A ph-tegs Tred i)

{
const struct exception_table_entry *e;
__get_user_1: ; get 1 byte ex_handler_t handler;
1: movzx edx, byte ptr [eax]
500 e = search_exception_tables(regs->ip);
__get_user_2: ; get 2 bytes if (le)
2: movzx edx, word ptr [eax - 1] // no handler, this is a kernel bug
R return 0;
__get_user_4: ; get 4 bytes
3: mov edx, dword ptr [eax - 3] handler = ex_fixup_handler(e);
. return handler(e, regs, trapnr);
bad_get_user:)
Xor edx, edx
mov eax, -EFAULT bool ex_handler_default(const struct exception_table_entry *f
ret struct pt_regs *regs, int trapnr)
{
.section __ex_table, "a" ; Exception table // jump to the "if-fault address’
.long 1b, bad_get_user, ex_handler_default regs->ip = ex_fixup_addr(fixup);
.long 2b, bad_get_user, ex_handler_default return true;
.long 3b, bad_get_user, ex_handler_default)

.previous

System call instruction?

int80h , sysenter or syscall

depends on the processor version
sysenter and syscall are faster but not always available

the kernel and the 1ibc must use the same instruction
vsyscall vDSO object

ysenter_setup() generates an ELF shared object that exports vsyscall that performs the system

call

libc calls vsyscall instead of an actual instruction

without sysenter -upto Pentium with syseneter - starting with Pentium II
__kernel vsyscall __kernel vsyscall
int 86h push ecx
ret push edx

push ebp

Qy

Conclusion

we talked about

= What is a system call?

= What is vDSO?

= How a system call is performed?
= Tock system calls

= Linux system calls

Qy

