Introduction

Lecture 1

Copyright © Politehnica Bucharest 2025, licensed under CC BY-SA 4.0.

Qy

https://pmrust.pages.upb.ro/

Welcome

to the Internal Strcuture of Operating Systems class

You will learn, understand and experiment

= learn how operating systems work

= understand how an embedded operating system works (Tock)

= understand how a new generation research oriented operating system works (Redox OS)
= understand how a production grade operating system works (Linux)

= write code using the Linux and Tock architecture language that boots a computer

= experiment with building your own small operating system

We expect

= to come to class

= aska lot of questions

Qy

Our team

Lectures

= Alexandru Radovici

Labs

» Teona Severin
= Joana Culic
» Vlad Badoiu

= Alexandru Vochescu

Advisor

= Razvan Deaconescu

Qy

Outline
Lectures Project
= 12 lectures = Build a minimal working OS that boots

= Build a minimal feature of the OS

LabS = filesystem

" memory management
= 7 labs

= will show you how to boot an x86 in Rust

» Workin teams of 3 or 4

Qy

Grading

Part

Lecture

Exam

Total

Description

You will have a test at every class with subjects from the previous class.

You will have to design and implement a hardware device. Grading will be done for the
documentation, hardware design and software development.

You will have to take an exam during the course’s last lecture.

You will need at least 4.5 points to pass the subject.

Points

2p

5p

3p

10p

Qy

Operating System

the purpose of an OS

Qy

Application Application

Operating System

the main role * %} *[% *}L%}

Allow Portability

= provides a hardware independent API [ENE }"""""S-u-p-e-r-v-i;(;r-;\/I-t;t-i:a"
4 N

Kernel

= applications should run on any hardware

o 5 -
R M d Isolati ==
esources anagement an solation
Actions :

Storage

= allow applications to access resources

= prevent applications from accessing

Processor

hardware directly

Accelerator Disk Drive Peripherals

= isolate applications NS @ . ‘ . ‘

Desktop and Server
O
Operating Systems q,} [ﬁ } { o0 } * } [

abstractions
User Mode - -
o e ENE Memory ~ beeeeeeeeeeeeeeeeeeeoaeo
ACthDS - - Supervisor Mode
e N
Kernel
= process and threads ; <.
o H
() ' ~
= use the Processor and Accelerators (GPU, |)
Neural Engine, etc) Process | —F_I
e
Actions Storage
S J
Data
Processor Accelerator Disk Drive Peripherals)
= everythingis a file 2 e WL -
= peripherals are viewed as files (POSIX) . . s s |

m /sys/class/gpio/gpio5/direction

m /sys/class/gpio/gpio5/value

Embedded Operating | O
Systems OIS

Actions

= process or threads

Kernel

m use the Processor and Accelerators

(Crypto Engines, Neural Engine, etc) © o%
Peripheral Actions Peripheral

g
. prOVide a hardware independent API Processor Accelerator | GPIO I | SPI I |mm@}| | [> ADC
= prevent processes from accessing the I B E
! E L PRI
peripheral

usually the applications and the kernel are
compiled together into a single binary

Kernel Types

from the kernel and drivers point of view

. .
Monolothic Microkernel
[} 2 Video File System Network
8 App App App > App App gl Driver Driver Driver
e A T A A
Kernel e
Kernel D g
3 . v :
2 Video Driver FlleDSystem Network Driver @ -
2 el pe! Memory Storage Driver Scheduler
(?) Driver
[Vlrtual Memory} [Storage Driver } [Scheduler J
Driver

= all drivers are applications
= all drivers in the kernel s Minix

= Windows, Linux, MacOS = Redox OS

Unikernel
Single App

8 A

2 Kernel Bococosacocsans

@ A4

s File System

(7] Video Driver Y Network Driver

Driver

! Virtual Memory ! . i Threads
H Driver | Storage Driver i\ Scheduler !

= the kernel is bundled with all
the drivers and one single
application

» Unikraft/Linux

» Most of the microcontroller
RTOSes

Qy

Memory Management

MMU

Qy

Memory Management

memory access defined page by page

= uses logical addresses

= translates to physical addresses
The processor works in at least two modes:

= supervisor mode
» restricts access to some registers
= accesses virtual addresses through Memory
Protection (if machine mode exists)
= user mode
= allows only ALU and memory load and store
= accesses memory access through the Memory

Management Unit (MMU)

Processor

Application Application Application

fMemory Management

~

User Mode

Operating System Operating System

Supervisor Mode

[Hypervisor (Virtual Machine Monitor)

Machine Mode (optional)

Region 2

Region 1

Memory
» Management Unit
(translation)

Configures

Y

Memory Protection

Q)

(optional)

Configures

Physical Memory W

Frame O

Frame 1

Frame 2

Frame m-1

Paging
the memory unit is the page
= Physical Memory (RAM) is

divided in frames
= Logical Memory is divided in
pages
= page = frame = 4 KB (usually)
logical addresses are translated to

physical addresses using a page
table

the page table is located in the
physical memory

f—

Logical Memory \

s)
Page 0

e)
Page 1

e)
Page 2

e)
Page 3

e A
Page 5

Page n-1

\;)

Qy

AN

/\

K Physical Memory
'
> Frame O
\
g
Page Table > Frame 1
"""")‘ = \
> o (
"""""" W 2 > Frame 2
7 \
>l N/A
Frame m-1

—

J

Ad dre S S Logic Address (Physical Address 1 O

° ffset
Trans 1 atl On Page IIndex 1 Offset } ‘ [Frame Index 1 O
page to frame
the logic address is divided
in two parts: Page Table
| (0 [Frame Index T Valid TAccess]
" Dbage index (1 [Frame Index TVaIid TAccess]
" Oﬁset within the page R EShaEE){ 2 [Frame Index ‘ Valid ‘ Access]

\)

the MMU translates every
logic address into a
physical address U.SiDg a ‘ 2P_q [Frame Index ‘ Valid ‘Access]
page table

Qy

Page Table Entry

for x86 - 32 bits

this is one entry of the page table

= P-isthe page’s frame present in RAM?

= R/W -read only or read write access

= U/S - can the page be accessed in user mode?

= Dand A - has this page been written since the OS has reset these bits?
= AVL - bits available for the OS to use, ignored by MMU

31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1- W Through 1: Super 1-RW 1: Valid

Address Space

what the 32 bit x86 CPU sees when in protected mode
Kernel Space
= accessible only in supervisor mode

m stores kernel code and data
= has the first 800 MB of RAM directly mapped

User Space

= accessible in user mode
= stores the process code and data

m stores the libraries’ code and data

/Address Space
(N\
Kernel Space
[RAM Mapping (up to 800 MB) }
S <
User Space
] Kemel Stack
Stack
Libraries
Heap
Data

[Null Protection

4)

O

Ox_FFFF_FFFF

0x_C000_0000

0x000_0000

Execution

Qy

Preemption

process vs kernel
Process point of view
Preemptive

= processes can be suspended by the scheduler

= amisbehaving process cannot stop the system
Cooperative

= processes cannot be suspended by the kernel

= amisbehaving process can stop the system

Kernel point of view

Preemptive

= kernel jobs can be suspended by the scheduler

= amisbehaving driver cannot stop the kernel
Cooperative

= kernel jobs cannot be suspended by the kernel

= amisbehaving kernel job can stop the system

Qy

Scheduler Examples

OS Process Scheduler
Linux preemptive
Windows preemptive
macOS preemptive
Redox OS preemptive
Tock preemptive

Infinite loops in Tock driver’s (capsules) will stop the system.

Qy

Kernel Scheduler

preemptive

preemptive

preemptive

preemptive

cooperative

System Call

the OS API

accessing a peripheral can be performed
only by the OS

The application:

1. puts values in the registers
2. triggers an exception

» syc instruction for ARM

= sysenter instruction for x86
The OS:

1. looks at the registers and determines
what the required action is
2. performs the action

3. puts the return values into the registers

Application

mov rO, #10

® X

svc
mov rO, #20

User Mode : - -
------------------------- :N: Memory S
- - Supervisor Mode
4 N\
Kernel
Actions L |
Exception Handler
STOP |
ARRETS A
Peripheral
Stop Application
-
\2
Processor
Registers
r0
.
gisters | Processing 9 Exceptions. Memory
o 0 s W 0

iz
{

Execution Context

how code is executed

Process Context

= process code (user mode)
= system call code (supervisor mode)
= kernel task code (supervisor mode)

= fake kernel process
Interrupt Context

= interrupt service routing
= supervisor or machine mode
= no current process

= should not be interrupted

\
Processor
Process
Kernel User Mode
process .~ —mT T
Process Deferred Supervisor Mode

System Call Kernel Work

(bottom half)

Drivers

Interrupt Service Routine
(top half)

=/

Process Context

Interrupt
Context

Qy

OS Archltecture

and Tock

Qy

Linux’s Architecture

how a general purpose operating system works

-

—(Linux kemel SCI (System Call Interface) Oy
Memory Process
1/0 subsystem management management
subsystem subsystem
Linux kernel h
Virtual File System Signal
handling
Paging process/thread
page creation &
replacement termination
Linux kernel
Process
Scheduler
N v
/

Qy

Linux’s source tree

where everything is

linux

vy v v v v

[arch | [block | [certs | [crvpto | [Documentation | [arvers |
v R R '
[rrmware | [] [newde] [t] [ne] [Ckernei] [0]
E ! ' v '
[wn | [net | [sampies | [scripts | [security | [sound |

R
oo] [wsr] [|

older image, it now has a rust folder

Qy

Tock’s Architecture

how an operating embedded system works

CApp . [Service] BLE .
Processes Ported to {(‘)1:} Ap.r:] ‘;St:en Environmental RO
(Any Language) Tock IRES Sensing Profile %
Sys(;a” INterfaCe sssssssssssssnsssssasssssasnsssnssassnssassssauunssuusnssnunnuanananunnnunns
~)
e (G) R) €) G)
memop, E
IPC S 6LoWPAN . SD Card " S17021 .
S J
Kernel .
(Rust) Standardized Hardware Interface Layer (HIL))
Core Kernel . .)) N
Microcontroller-specific Peripheral Drivers
Scheduler, Process
management, etc. { SPI }[RNG }[Timer][ADC }[GPIO]
_ ((2c J[uart J[aes) pac][use]J
J
Hardware CPU

Untrusted
(isolated by
¥ the MPU and
preemptively
scheduled)

Untrusted
(unsafe

forbidden)

Trusted
(unsafe
allowed for
MMIO,
PIC, etc.)

Tock’s source tree

where everything is

+-- tock # kernel
| +-- arch # code specific to MCUs (ARM, RISC-V)
| +-- boards # code specific to boards (STM32F412G Discovery Kit)
| +-- capsules # drivers
| +-- chips # code specific to MCUs (STM32F412G, E310,)
| +-- doc # documentation
| +-- kernel # actual kernel (scheduler, ipc, memory)
| +-- libraries # libraries used by all the source code
| +-- tools # scripts for testing on other tools
| +-- vagrant # VM setup (different from ours)
S —
board
! | l
[chips ’ kernel ‘ capsules ’

arch

Qy

Conclusion

we talked about

Types of OS kernel

Preemptive and cooperative kernel
Memory management and address space
Execution Contexts

Linux and Tock architecture

Qy

