
Copyright © Politehnica Bucharest 2025, licensed under CC BY-SA 4.0.

Introduction
Lecture 1

https://pmrust.pages.upb.ro/

Welcome

You will learn, understand and experiment
learn how operating systems work

understand how an embedded operating system works (Tock)

understand how a new generation research oriented operating system works (Redox OS)

understand how a production grade operating system works (Linux)

write code using the Linux and Tock architecture language that boots a computer

experiment with building your own small operating system

We expect
to come to class

ask a lot of questions

to the Internal Strcuture of Operating Systems class

Our team
Lectures

Alexandru Radovici

Labs
Teona Severin

Ioana Culic

Vlad Bădoiu

Alexandru Vochescu

Advisor
Răzvan Deaconescu

Outline
Lectures

12 lectures

Labs
7 labs

will show you how to boot an x86 in Rust

Project
Build a minimal working OS that boots

Build a minimal feature of the OS

filesystem

memory management

…

Work in teams of 3 or 4

Grading
Part Description Points

Lecture
tests

You will have a test at every class with subjects from the previous class. 2p

Project
You will have to design and implement a hardware device. Grading will be done for the
documentation, hardware design and software development.

5p

Exam You will have to take an exam during the course’s last lecture. 3p

Total You will need at least 4.5 points to pass the subject. 10p

Operating System
the purpose of an OS

Operating System

Allow Portability

provides a hardware independent API

applications should run on any hardware

Resources Management and Isolation

allow applications to access resources

prevent applications from accessing

hardware directly

isolate applications

Processor

1 2 3

4 5

Disk Drive

Application Application Application

Accelerator

1 2 3

4 5

Peripherals

Memory
User Mode

Supervisor Mode

Storage
Actions

Kernel

the main role

Desktop and Server
Operating Systems

Actions

process and threads

use the Processor and Accelerators (GPU,

Neural Engine, etc)

Data

everything is a file

peripherals are viewed as files (POSIX)

/sys/class/gpio/gpio5/direction

/sys/class/gpio/gpio5/value

Processor

1 2 3

4 5

Disk Drive

Application Application Application

Accelerator

1 2 3

4 5

Peripherals

Memory
User Mode

Supervisor Mode

File
Storage

Process
Actions

Kernel

abstractions

Embedded Operating
Systems
Actions

process or threads

use the Processor and Accelerators

(Crypto Engines, Neural Engine, etc)

Peripheral

provide a hardware independent API

prevent processes from accessing the

peripheral

usually the applications and the kernel are
compiled together into a single binary

Processor

Application

Accelerator

Memory
User Mode

Supervisor Mode

Actions

Kernel

Peripheral

ApplicationApplication

GPIO SPI

 I2C

 ADC

 PWM

Kernel Types

Monolothic

S
up

er
vi

so
r

U
se

r

App App App

Virtual Memory
Driver

Storage Driver

Network DriverVideo Driver File System
Driver

...

Kernel

Scheduler

all drivers in the kernel

Windows, Linux, MacOS

Microkernel

S
up

er
vi

so
r

U
se

r

App App App Network
Driver

Video
Driver

File System
Driver

...

Virtual Memory
Driver

Storage Driver

Kernel

Scheduler

IPC

all drivers are applications

Minix

Redox OS

Unikernel

S
up

er
vi

so
r

Single App

Virtual Memory
Driver

Storage Driver

Network DriverVideo Driver File System
Driver

...

Kernel

Threads
Scheduler

the kernel is bundled with all

the drivers and one single

application

Unikraft/Linux

Most of the microcontroller

RTOSes

from the kernel and drivers point of view

Memory Management
MMU

Memory Management

uses logical addresses

translates to physical addresses

The processor works in at least two modes:

supervisor mode

restricts access to some registers

accesses virtual addresses through Memory

Protection (if machine mode exists)

user mode

allows only ALU and memory load and store

accesses memory access through the Memory

Management Unit (MMU)

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

R
eg

io
n

2

Processor

Hypervisor (Virtual Machine Monitor)

Operating System

Application Application Application

Operating System

Machine Mode (optional)

Supervisor Mode

User Mode

R
eg

io
n

1

Configures

Memory
Management Unit

(translation)

Configures

Memory Protection
(optional)

Memory Management

memory access defined page by page

Paging

Physical Memory (RAM) is

divided in frames

Logical Memory is divided in

pages

page = frame = 4 KB (usually)

logical addresses are translated to
physical addresses using a page
table

the page table is located in the
physical memory

each memory access requires at

least memory 2 accesses

Page Table

1

0

200

2

7

N/A

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

Logical Memory

Page n-1

Page 1

Page 0

Page 2

Page 3

Page 5

the memory unit is the page

Address
Translation

the logic address is divided
in two parts:

page index

offset within the page

the MMU translates every
logic address into a
physical address using a
page table

Page Index Offset

Logic Address

Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

page to frame

Page Table Entry

this is one entry of the page table

P - is the page’s frame present in RAM?

R/W - read only or read write access

U/S - can the page be accessed in user mode?

D and A - has this page been written since the OS has reset these bits?

AVL - bits available for the OS to use, ignored by MMU

0123456789111215

PR/WU/SPWTPCDADPATGAVLFrame Number

0: Invalid
1: Valid

0 - R
1 - RW

0: User
1: Super

0 - W Back
1 - W Through

CacheAccessedDirtyAttributesGlobalavailable for OS

1631

Frame Number

for x86 - 32 bits

Address Space

Kernel Space

accessible only in supervisor mode

stores kernel code and data

has the first 800 MB of RAM directly mapped

User Space

accessible in user mode

stores the process code and data

stores the libraries’ code and data

Address Space

Null Protection

User Space

Kernel Space

0x000_0000

0x_C000_0000

RAM Mapping (up to 800 MB)

0x_FFFF_FFFF

Code

Data

Stack

Heap

Kernel Stack

 DataCode DataCode

Libraries

what the 32 bit x86 CPU sees when in protected mode

Execution

Preemption

Process point of view

Preemptive

processes can be suspended by the scheduler

a misbehaving process cannot stop the system

Cooperative

processes cannot be suspended by the kernel

a misbehaving process can stop the system

Kernel point of view

Preemptive

kernel jobs can be suspended by the scheduler

a misbehaving driver cannot stop the kernel

Cooperative

kernel jobs cannot be suspended by the kernel

a misbehaving kernel job can stop the system

process vs kernel

Scheduler Examples
OS Process Scheduler Kernel Scheduler

Linux preemptive preemptive

Windows preemptive preemptive

macOS preemptive preemptive

Redox OS preemptive preemptive

Tock preemptive cooperative

Infinite loops in Tock driver’s (capsules) will stop the system.

System Call

accessing a peripheral can be performed
only by the OS

The application:

1. puts values in the registers

2. triggers an exception

svc instruction for ARM

sysenter instruction for x86

The OS:

1. looks at the registers and determines

what the required action is

2. performs the action

3. puts the return values into the registers

Application

Memory
User Mode

Supervisor Mode

Actions

Kernel

Stop Application

 Exception Handler

Peripheral

Processor

Registers
r0

r1

r2

mov r0, #10

svc

mov r0, #20the OS API

Registers

r0

r1

r2

Processor

Processing

add

sub

and

Exceptions

reset ()

supervisor ()

div0 ()

Memory

function reset () { ... }

function supervisor () { ... }

function div0 () { ... }

Execution Context

Process Context

process code (user mode)

system call code (supervisor mode)

kernel task code (supervisor mode)

fake kernel process

Interrupt Context

interrupt service routing

supervisor or machine mode

no current process

should not be interrupted

 Processor

 Interrupt Service Routine
(top half)

Supervisor Mode

User Mode

Process

Process
System Call

Kernel
Process
Deferred

Kernel Work
(bottom half)

Drivers
Interrupt
Context

Process Context

how code is executed

OS Architecture
Linux and Tock

Linux’s Architecture
how a general purpose operating system works

Linux’s source tree

older image, it now has a rust folder

where everything is

Tock’s Architecture
how an operating embedded system works

Tock’s source tree

board

capsuleschips kernel

arch

where everything is

1 +-- tock # kernel

2 | +-- arch # code specific to MCUs (ARM, RISC-V)

3 | +-- boards # code specific to boards (STM32F412G Discovery Kit)

4 | +-- capsules # drivers

5 | +-- chips # code specific to MCUs (STM32F412G, E310,)

6 | +-- doc # documentation

7 | +-- kernel # actual kernel (scheduler, ipc, memory)

8 | +-- libraries # libraries used by all the source code

9 | +-- tools # scripts for testing on other tools

10 | +-- vagrant # VM setup (different from ours)

Conclusion

Types of OS kernel

Preemptive and cooperative kernel

Memory management and address space

Execution Contexts

Linux and Tock architecture

we talked about

